mirror of
https://github.com/maybe-finance/maybe.git
synced 2025-07-18 20:59:39 +02:00
260 lines
9.5 KiB
Ruby
260 lines
9.5 KiB
Ruby
require "test_helper"
|
|
|
|
class Provider::OpenaiTest < ActiveSupport::TestCase
|
|
include LLMInterfaceTest
|
|
|
|
setup do
|
|
@subject = @openai = Provider::Openai.new(ENV.fetch("OPENAI_ACCESS_TOKEN", "test-openai-token"))
|
|
@subject_model = "gpt-4.1"
|
|
end
|
|
|
|
test "openai errors are automatically raised" do
|
|
VCR.use_cassette("openai/chat/error") do
|
|
response = @openai.chat_response("Test", model: "invalid-model-that-will-trigger-api-error")
|
|
|
|
assert_not response.success?
|
|
assert_kind_of Provider::Openai::Error, response.error
|
|
end
|
|
end
|
|
|
|
test "auto categorizes transactions by various attributes" do
|
|
VCR.use_cassette("openai/auto_categorize") do
|
|
input_transactions = [
|
|
{ id: "1", name: "McDonalds", amount: 20, classification: "expense", merchant: "McDonalds", hint: "Fast Food" },
|
|
{ id: "2", name: "Amazon purchase", amount: 100, classification: "expense", merchant: "Amazon" },
|
|
{ id: "3", name: "Netflix subscription", amount: 10, classification: "expense", merchant: "Netflix", hint: "Subscriptions" },
|
|
{ id: "4", name: "paycheck", amount: 3000, classification: "income" },
|
|
{ id: "5", name: "Italian dinner with friends", amount: 100, classification: "expense" },
|
|
{ id: "6", name: "1212XXXBCaaa charge", amount: 2.99, classification: "expense" }
|
|
]
|
|
|
|
response = @subject.auto_categorize(
|
|
transactions: input_transactions,
|
|
user_categories: [
|
|
{ id: "shopping_id", name: "Shopping", is_subcategory: false, parent_id: nil, classification: "expense" },
|
|
{ id: "subscriptions_id", name: "Subscriptions", is_subcategory: true, parent_id: nil, classification: "expense" },
|
|
{ id: "restaurants_id", name: "Restaurants", is_subcategory: false, parent_id: nil, classification: "expense" },
|
|
{ id: "fast_food_id", name: "Fast Food", is_subcategory: true, parent_id: "restaurants_id", classification: "expense" },
|
|
{ id: "income_id", name: "Income", is_subcategory: false, parent_id: nil, classification: "income" }
|
|
]
|
|
)
|
|
|
|
assert response.success?
|
|
assert_equal input_transactions.size, response.data.size
|
|
|
|
txn1 = response.data.find { |c| c.transaction_id == "1" }
|
|
txn2 = response.data.find { |c| c.transaction_id == "2" }
|
|
txn3 = response.data.find { |c| c.transaction_id == "3" }
|
|
txn4 = response.data.find { |c| c.transaction_id == "4" }
|
|
txn5 = response.data.find { |c| c.transaction_id == "5" }
|
|
txn6 = response.data.find { |c| c.transaction_id == "6" }
|
|
|
|
assert_equal "Fast Food", txn1.category_name
|
|
assert_equal "Shopping", txn2.category_name
|
|
assert_equal "Subscriptions", txn3.category_name
|
|
assert_equal "Income", txn4.category_name
|
|
assert_equal "Restaurants", txn5.category_name
|
|
assert_nil txn6.category_name
|
|
end
|
|
end
|
|
|
|
test "auto detects merchants" do
|
|
VCR.use_cassette("openai/auto_detect_merchants") do
|
|
input_transactions = [
|
|
{ id: "1", name: "McDonalds", amount: 20, classification: "expense" },
|
|
{ id: "2", name: "local pub", amount: 20, classification: "expense" },
|
|
{ id: "3", name: "WMT purchases", amount: 20, classification: "expense" },
|
|
{ id: "4", name: "amzn 123 abc", amount: 20, classification: "expense" },
|
|
{ id: "5", name: "chaseX1231", amount: 2000, classification: "income" },
|
|
{ id: "6", name: "check deposit 022", amount: 200, classification: "income" },
|
|
{ id: "7", name: "shooters bar and grill", amount: 200, classification: "expense" },
|
|
{ id: "8", name: "Microsoft Office subscription", amount: 200, classification: "expense" }
|
|
]
|
|
|
|
response = @subject.auto_detect_merchants(
|
|
transactions: input_transactions,
|
|
user_merchants: [ { name: "Shooters" } ]
|
|
)
|
|
|
|
assert response.success?
|
|
assert_equal input_transactions.size, response.data.size
|
|
|
|
txn1 = response.data.find { |c| c.transaction_id == "1" }
|
|
txn2 = response.data.find { |c| c.transaction_id == "2" }
|
|
txn3 = response.data.find { |c| c.transaction_id == "3" }
|
|
txn4 = response.data.find { |c| c.transaction_id == "4" }
|
|
txn5 = response.data.find { |c| c.transaction_id == "5" }
|
|
txn6 = response.data.find { |c| c.transaction_id == "6" }
|
|
txn7 = response.data.find { |c| c.transaction_id == "7" }
|
|
txn8 = response.data.find { |c| c.transaction_id == "8" }
|
|
|
|
assert_equal "McDonald's", txn1.business_name
|
|
assert_equal "mcdonalds.com", txn1.business_url
|
|
|
|
assert_nil txn2.business_name
|
|
assert_nil txn2.business_url
|
|
|
|
assert_equal "Walmart", txn3.business_name
|
|
assert_equal "walmart.com", txn3.business_url
|
|
|
|
assert_equal "Amazon", txn4.business_name
|
|
assert_equal "amazon.com", txn4.business_url
|
|
|
|
assert_nil txn5.business_name
|
|
assert_nil txn5.business_url
|
|
|
|
assert_nil txn6.business_name
|
|
assert_nil txn6.business_url
|
|
|
|
assert_equal "Shooters", txn7.business_name
|
|
assert_nil txn7.business_url
|
|
|
|
assert_equal "Microsoft", txn8.business_name
|
|
assert_equal "microsoft.com", txn8.business_url
|
|
end
|
|
end
|
|
|
|
test "basic chat response" do
|
|
VCR.use_cassette("openai/chat/basic_response") do
|
|
response = @subject.chat_response(
|
|
"This is a chat test. If it's working, respond with a single word: Yes",
|
|
model: @subject_model
|
|
)
|
|
|
|
assert response.success?
|
|
assert_equal 1, response.data.messages.size
|
|
assert_includes response.data.messages.first.output_text, "Yes"
|
|
end
|
|
end
|
|
|
|
test "streams basic chat response" do
|
|
VCR.use_cassette("openai/chat/basic_streaming_response") do
|
|
collected_chunks = []
|
|
|
|
mock_streamer = proc do |chunk|
|
|
collected_chunks << chunk
|
|
end
|
|
|
|
response = @subject.chat_response(
|
|
"This is a chat test. If it's working, respond with a single word: Yes",
|
|
model: @subject_model,
|
|
streamer: mock_streamer
|
|
)
|
|
|
|
text_chunks = collected_chunks.select { |chunk| chunk.type == "output_text" }
|
|
response_chunks = collected_chunks.select { |chunk| chunk.type == "response" }
|
|
|
|
assert_equal 1, text_chunks.size
|
|
assert_equal 1, response_chunks.size
|
|
assert_equal "Yes", text_chunks.first.data
|
|
assert_equal "Yes", response_chunks.first.data.messages.first.output_text
|
|
assert_equal response_chunks.first.data, response.data
|
|
end
|
|
end
|
|
|
|
test "chat response with function calls" do
|
|
VCR.use_cassette("openai/chat/function_calls") do
|
|
prompt = "What is my net worth?"
|
|
|
|
functions = [
|
|
{
|
|
name: "get_net_worth",
|
|
description: "Gets a user's net worth",
|
|
params_schema: { type: "object", properties: {}, required: [], additionalProperties: false },
|
|
strict: true
|
|
}
|
|
]
|
|
|
|
first_response = @subject.chat_response(
|
|
prompt,
|
|
model: @subject_model,
|
|
instructions: "Use the tools available to you to answer the user's question.",
|
|
functions: functions
|
|
)
|
|
|
|
assert first_response.success?
|
|
|
|
function_request = first_response.data.function_requests.first
|
|
|
|
assert function_request.present?
|
|
|
|
second_response = @subject.chat_response(
|
|
prompt,
|
|
model: @subject_model,
|
|
function_results: [ {
|
|
call_id: function_request.call_id,
|
|
output: { amount: 10000, currency: "USD" }.to_json
|
|
} ],
|
|
previous_response_id: first_response.data.id
|
|
)
|
|
|
|
assert second_response.success?
|
|
assert_equal 1, second_response.data.messages.size
|
|
assert_includes second_response.data.messages.first.output_text, "$10,000"
|
|
end
|
|
end
|
|
|
|
test "streams chat response with function calls" do
|
|
VCR.use_cassette("openai/chat/streaming_function_calls") do
|
|
collected_chunks = []
|
|
|
|
mock_streamer = proc do |chunk|
|
|
collected_chunks << chunk
|
|
end
|
|
|
|
prompt = "What is my net worth?"
|
|
|
|
functions = [
|
|
{
|
|
name: "get_net_worth",
|
|
description: "Gets a user's net worth",
|
|
params_schema: { type: "object", properties: {}, required: [], additionalProperties: false },
|
|
strict: true
|
|
}
|
|
]
|
|
|
|
# Call #1: First streaming call, will return a function request
|
|
@subject.chat_response(
|
|
prompt,
|
|
model: @subject_model,
|
|
instructions: "Use the tools available to you to answer the user's question.",
|
|
functions: functions,
|
|
streamer: mock_streamer
|
|
)
|
|
|
|
text_chunks = collected_chunks.select { |chunk| chunk.type == "output_text" }
|
|
response_chunks = collected_chunks.select { |chunk| chunk.type == "response" }
|
|
|
|
assert_equal 0, text_chunks.size
|
|
assert_equal 1, response_chunks.size
|
|
|
|
first_response = response_chunks.first.data
|
|
function_request = first_response.function_requests.first
|
|
|
|
# Reset collected chunks for the second call
|
|
collected_chunks = []
|
|
|
|
# Call #2: Second streaming call, will return a function result
|
|
@subject.chat_response(
|
|
prompt,
|
|
model: @subject_model,
|
|
function_results: [
|
|
{
|
|
call_id: function_request.call_id,
|
|
output: { amount: 10000, currency: "USD" }
|
|
}
|
|
],
|
|
previous_response_id: first_response.id,
|
|
streamer: mock_streamer
|
|
)
|
|
|
|
text_chunks = collected_chunks.select { |chunk| chunk.type == "output_text" }
|
|
response_chunks = collected_chunks.select { |chunk| chunk.type == "response" }
|
|
|
|
assert text_chunks.size >= 1
|
|
assert_equal 1, response_chunks.size
|
|
|
|
assert_includes response_chunks.first.data.messages.first.output_text, "$10,000"
|
|
end
|
|
end
|
|
end
|