1
0
Fork 0
mirror of https://github.com/maybe-finance/maybe.git synced 2025-07-22 22:59:39 +02:00
Maybe/test/models/provider/openai_test.rb
Zach Gollwitzer 2f6b11c18f
Personal finance AI (v1) (#2022)
* AI sidebar

* Add chat and message models with associations

* Implement AI chat functionality with sidebar and messaging system

- Add chat and messages controllers
- Create chat and message views
- Implement chat-related routes
- Add message broadcasting and user interactions
- Update application layout to support chat sidebar
- Enhance user model with initials method

* Refactor AI sidebar with enhanced chat menu and interactions

- Update sidebar layout with dynamic width and improved responsiveness
- Add new chat menu Stimulus controller for toggling between chat and chat list views
- Improve chat list display with recent chats and empty state
- Extract AI avatar to a partial for reusability
- Enhance message display and interaction styling
- Add more contextual buttons and interaction hints

* Improve chat scroll behavior and message styling

- Refactor chat scroll functionality with Stimulus controller
- Optimize message scrolling in chat views
- Update message styling for better visual hierarchy
- Enhance chat container layout with flex and auto-scroll
- Simplify message rendering across different chat views

* Extract AI avatar to a shared partial for consistent styling

- Refactor AI avatar rendering across chat views
- Replace hardcoded avatar markup with a reusable partial
- Simplify avatar display in chats and messages views

* Update sidebar controller to handle right panel width dynamically

- Add conditional width class for right sidebar panel
- Ensure consistent sidebar toggle behavior for both left and right panels
- Use specific width class for right panel (w-[375px])

* Refactor chat form and AI greeting with flexible partials

- Extract message form to a reusable partial with dynamic context support
- Create flexible AI greeting partial for consistent welcome messages
- Simplify chat and sidebar views by leveraging new partials
- Add support for different form scenarios (chat, new chat, sidebar)
- Improve code modularity and reduce duplication

* Add chat clearing functionality with dynamic menu options

- Implement clear chat action in ChatsController
- Add clear chat route to support clearing messages
- Update AI sidebar with dropdown menu for chat actions
- Preserve system message when clearing chat
- Enhance chat interaction with new menu options

* Add frontmatter to project structure documentation

- Create initial frontmatter for structure.mdc file
- Include description and configuration options
- Prepare for potential dynamic documentation rendering

* Update general project rules with additional guidelines

- Add rule for using `Current.family` instead of `current_family`
- Include new guidelines for testing, API routes, and solution approach
- Expand project-specific rules for more consistent development practices

* Add OpenAI gem and AI-friendly data representations

- Add `ruby-openai` gem for AI integration
- Implement `to_ai_readable_hash` methods in BalanceSheet and IncomeStatement
- Include Promptable module in both models
- Add savings rate calculation method in IncomeStatement
- Prepare financial models for AI-powered insights and interactions

* Enhance AI Financial Assistant with Advanced Querying and Debugging Capabilities

- Implement comprehensive AI financial query system with function-based interactions
- Add detailed debug logging for AI responses and function calls
- Extend BalanceSheet and IncomeStatement models with AI-friendly methods
- Create robust error handling and fallback mechanisms for AI queries
- Update chat and message views to support debug mode and enhanced rendering
- Add AI query routes and initial test coverage for financial assistant

* Refactor AI sidebar and chat layout with improved structure and comments

- Remove inline AI chat from application layout
- Enhance AI sidebar with more semantic HTML structure
- Add descriptive comments to clarify different sections of chat view
- Improve flex layout and scrolling behavior in chat messages container
- Optimize message rendering with more explicit class names and structure

* Add Markdown rendering support for AI chat messages

- Implement `markdown` helper method in ApplicationHelper using Redcarpet
- Update message view to render AI messages with Markdown formatting
- Add comprehensive Markdown rendering options (tables, code blocks, links)
- Enhance AI Financial Assistant prompt to encourage Markdown usage
- Remove commented Markdown CSS in Tailwind application stylesheet

* Missing comma

* Enhance AI response processing with chat history context

* Improve AI debug logging with payload size limits and internal message flag

* Enhance AI chat interaction with improved thinking indicator and scrolling behavior

* Add AI consent and enable/disable functionality for AI chat

* Upgrade Biome and refactor JavaScript template literals

- Update @biomejs/biome to latest version with caret (^) notation
- Refactor AI query and chat controllers to use template literals
- Standardize npm scripts formatting in package.json

* Add beta testing usage note to AI consent modal

* Update test fixtures and configurations for AI chat functionality

- Add family association to chat fixtures and tests
- Set consistent password digest for test users
- Enable AI for test users
- Add OpenAI access token for test environment
- Update chat and user model tests to include family context

* Simplify data model and get tests passing

* Remove structure.mdc from version control

* Integrate AI chat styles into existing prose pattern

* Match Figma design spec, implement Turbo frames and actions for chats controller

* AI rules refresh

* Consolidate Stimulus controllers, thinking state, controllers, and views

* Naming, domain alignment

* Reset migrations

* Improve data model to support tool calls and message types

* Tool calling tests and fixtures

* Tool call implementation and test

* Get assistant test working again

* Test updates

* Process tool calls within provider

* Chat UI back to working state again

* Remove stale code

* Tests passing

* Update openai class naming to avoid conflicts

* Reconfigure test env

* Rebuild gemfile

* Fix naming conflicts for ChatResponse

* Message styles

* Use OpenAI conversation state management

* Assistant function base implementation

* Add back thinking messages, clean up error handling for chat

* Fix sync error when security price has bad data from provider

* Add balance sheet function to assistant

* Add better function calling error visibility

* Add income statement function

* Simplify and clean up "thinking" interactions with Turbo frames

* Remove stale data definitions from functions

* Ensure VCR fixtures working with latest code

* basic stream implementation

* Get streaming working

* Make AI sidebar wider when left sidebar is collapsed

* Get tests working with streaming responses

* Centralize provider error handling

* Provider data boundaries

---------

Co-authored-by: Josh Pigford <josh@joshpigford.com>
2025-03-28 13:08:22 -04:00

136 lines
4.2 KiB
Ruby

require "test_helper"
class Provider::OpenaiTest < ActiveSupport::TestCase
include LLMInterfaceTest
setup do
@subject = @openai = Provider::Openai.new(ENV.fetch("OPENAI_ACCESS_TOKEN", "test-openai-token"))
@subject_model = "gpt-4o"
@chat = chats(:two)
end
test "openai errors are automatically raised" do
VCR.use_cassette("openai/chat/error") do
response = @openai.chat_response(UserMessage.new(
chat: @chat,
content: "Error test",
ai_model: "invalid-model-that-will-trigger-api-error"
))
assert_not response.success?
assert_kind_of Provider::Openai::Error, response.error
end
end
test "basic chat response" do
VCR.use_cassette("openai/chat/basic_response") do
message = @chat.messages.create!(
type: "UserMessage",
content: "This is a chat test. If it's working, respond with a single word: Yes",
ai_model: @subject_model
)
response = @subject.chat_response(message)
assert response.success?
assert_equal 1, response.data.messages.size
assert_includes response.data.messages.first.content, "Yes"
end
end
test "streams basic chat response" do
VCR.use_cassette("openai/chat/basic_response") do
collected_chunks = []
mock_streamer = proc do |chunk|
collected_chunks << chunk
end
message = @chat.messages.create!(
type: "UserMessage",
content: "This is a chat test. If it's working, respond with a single word: Yes",
ai_model: @subject_model
)
@subject.chat_response(message, streamer: mock_streamer)
tool_call_chunks = collected_chunks.select { |chunk| chunk.type == "function_request" }
text_chunks = collected_chunks.select { |chunk| chunk.type == "output_text" }
response_chunks = collected_chunks.select { |chunk| chunk.type == "response" }
assert_equal 1, text_chunks.size
assert_equal 1, response_chunks.size
assert_equal 0, tool_call_chunks.size
assert_equal "Yes", text_chunks.first.data
assert_equal "Yes", response_chunks.first.data.messages.first.content
end
end
test "chat response with tool calls" do
VCR.use_cassette("openai/chat/tool_calls") do
response = @subject.chat_response(
tool_call_message,
instructions: "Use the tools available to you to answer the user's question.",
available_functions: [ PredictableToolFunction.new(@chat) ]
)
assert response.success?
assert_equal 1, response.data.functions.size
assert_equal 1, response.data.messages.size
assert_includes response.data.messages.first.content, PredictableToolFunction.expected_test_result
end
end
test "streams chat response with tool calls" do
VCR.use_cassette("openai/chat/tool_calls") do
collected_chunks = []
mock_streamer = proc do |chunk|
collected_chunks << chunk
end
@subject.chat_response(
tool_call_message,
instructions: "Use the tools available to you to answer the user's question.",
available_functions: [ PredictableToolFunction.new(@chat) ],
streamer: mock_streamer
)
text_chunks = collected_chunks.select { |chunk| chunk.type == "output_text" }
text_chunks = collected_chunks.select { |chunk| chunk.type == "output_text" }
tool_call_chunks = collected_chunks.select { |chunk| chunk.type == "function_request" }
response_chunks = collected_chunks.select { |chunk| chunk.type == "response" }
assert_equal 1, tool_call_chunks.count
assert text_chunks.count >= 1
assert_equal 1, response_chunks.count
assert_includes response_chunks.first.data.messages.first.content, PredictableToolFunction.expected_test_result
end
end
private
def tool_call_message
UserMessage.new(chat: @chat, content: "What is my net worth?", ai_model: @subject_model)
end
class PredictableToolFunction < Assistant::Function
class << self
def expected_test_result
"$124,200"
end
def name
"get_net_worth"
end
def description
"Gets user net worth data"
end
end
def call(params = {})
self.class.expected_test_result
end
end
end