1
0
Fork 0
mirror of https://github.com/documize/community.git synced 2025-07-23 15:19:42 +02:00

initial commit

This commit is contained in:
Harvey Kandola 2016-07-07 18:54:16 -07:00
commit 18933c6767
1841 changed files with 810642 additions and 0 deletions

190
vendor/golang.org/x/image/bmp/reader.go generated vendored Normal file
View file

@ -0,0 +1,190 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bmp implements a BMP image decoder and encoder.
//
// The BMP specification is at http://www.digicamsoft.com/bmp/bmp.html.
package bmp
import (
"errors"
"image"
"image/color"
"io"
)
// ErrUnsupported means that the input BMP image uses a valid but unsupported
// feature.
var ErrUnsupported = errors.New("bmp: unsupported BMP image")
func readUint16(b []byte) uint16 {
return uint16(b[0]) | uint16(b[1])<<8
}
func readUint32(b []byte) uint32 {
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
// decodePaletted reads an 8 bit-per-pixel BMP image from r.
// If topDown is false, the image rows will be read bottom-up.
func decodePaletted(r io.Reader, c image.Config, topDown bool) (image.Image, error) {
var tmp [4]byte
paletted := image.NewPaletted(image.Rect(0, 0, c.Width, c.Height), c.ColorModel.(color.Palette))
y0, y1, yDelta := c.Height-1, -1, -1
if topDown {
y0, y1, yDelta = 0, c.Height, +1
}
for y := y0; y != y1; y += yDelta {
p := paletted.Pix[y*paletted.Stride : y*paletted.Stride+c.Width]
if _, err := io.ReadFull(r, p); err != nil {
return nil, err
}
// Each row is 4-byte aligned.
if c.Width%4 != 0 {
_, err := io.ReadFull(r, tmp[:4-c.Width%4])
if err != nil {
return nil, err
}
}
}
return paletted, nil
}
// decodeRGB reads a 24 bit-per-pixel BMP image from r.
// If topDown is false, the image rows will be read bottom-up.
func decodeRGB(r io.Reader, c image.Config, topDown bool) (image.Image, error) {
rgba := image.NewRGBA(image.Rect(0, 0, c.Width, c.Height))
// There are 3 bytes per pixel, and each row is 4-byte aligned.
b := make([]byte, (3*c.Width+3)&^3)
y0, y1, yDelta := c.Height-1, -1, -1
if topDown {
y0, y1, yDelta = 0, c.Height, +1
}
for y := y0; y != y1; y += yDelta {
if _, err := io.ReadFull(r, b); err != nil {
return nil, err
}
p := rgba.Pix[y*rgba.Stride : y*rgba.Stride+c.Width*4]
for i, j := 0, 0; i < len(p); i, j = i+4, j+3 {
// BMP images are stored in BGR order rather than RGB order.
p[i+0] = b[j+2]
p[i+1] = b[j+1]
p[i+2] = b[j+0]
p[i+3] = 0xFF
}
}
return rgba, nil
}
// decodeNRGBA reads a 32 bit-per-pixel BMP image from r.
// If topDown is false, the image rows will be read bottom-up.
func decodeNRGBA(r io.Reader, c image.Config, topDown bool) (image.Image, error) {
rgba := image.NewNRGBA(image.Rect(0, 0, c.Width, c.Height))
y0, y1, yDelta := c.Height-1, -1, -1
if topDown {
y0, y1, yDelta = 0, c.Height, +1
}
for y := y0; y != y1; y += yDelta {
p := rgba.Pix[y*rgba.Stride : y*rgba.Stride+c.Width*4]
if _, err := io.ReadFull(r, p); err != nil {
return nil, err
}
for i := 0; i < len(p); i += 4 {
// BMP images are stored in BGRA order rather than RGBA order.
p[i+0], p[i+2] = p[i+2], p[i+0]
}
}
return rgba, nil
}
// Decode reads a BMP image from r and returns it as an image.Image.
// Limitation: The file must be 8, 24 or 32 bits per pixel.
func Decode(r io.Reader) (image.Image, error) {
c, bpp, topDown, err := decodeConfig(r)
if err != nil {
return nil, err
}
switch bpp {
case 8:
return decodePaletted(r, c, topDown)
case 24:
return decodeRGB(r, c, topDown)
case 32:
return decodeNRGBA(r, c, topDown)
}
panic("unreachable")
}
// DecodeConfig returns the color model and dimensions of a BMP image without
// decoding the entire image.
// Limitation: The file must be 8, 24 or 32 bits per pixel.
func DecodeConfig(r io.Reader) (image.Config, error) {
config, _, _, err := decodeConfig(r)
return config, err
}
func decodeConfig(r io.Reader) (config image.Config, bitsPerPixel int, topDown bool, err error) {
// We only support those BMP images that are a BITMAPFILEHEADER
// immediately followed by a BITMAPINFOHEADER.
const (
fileHeaderLen = 14
infoHeaderLen = 40
)
var b [1024]byte
if _, err := io.ReadFull(r, b[:fileHeaderLen+infoHeaderLen]); err != nil {
return image.Config{}, 0, false, err
}
if string(b[:2]) != "BM" {
return image.Config{}, 0, false, errors.New("bmp: invalid format")
}
offset := readUint32(b[10:14])
if readUint32(b[14:18]) != infoHeaderLen {
return image.Config{}, 0, false, ErrUnsupported
}
width := int(int32(readUint32(b[18:22])))
height := int(int32(readUint32(b[22:26])))
if height < 0 {
height, topDown = -height, true
}
if width < 0 || height < 0 {
return image.Config{}, 0, false, ErrUnsupported
}
// We only support 1 plane, 8 or 24 bits per pixel and no compression.
planes, bpp, compression := readUint16(b[26:28]), readUint16(b[28:30]), readUint32(b[30:34])
if planes != 1 || compression != 0 {
return image.Config{}, 0, false, ErrUnsupported
}
switch bpp {
case 8:
if offset != fileHeaderLen+infoHeaderLen+256*4 {
return image.Config{}, 0, false, ErrUnsupported
}
_, err = io.ReadFull(r, b[:256*4])
if err != nil {
return image.Config{}, 0, false, err
}
pcm := make(color.Palette, 256)
for i := range pcm {
// BMP images are stored in BGR order rather than RGB order.
// Every 4th byte is padding.
pcm[i] = color.RGBA{b[4*i+2], b[4*i+1], b[4*i+0], 0xFF}
}
return image.Config{ColorModel: pcm, Width: width, Height: height}, 8, topDown, nil
case 24:
if offset != fileHeaderLen+infoHeaderLen {
return image.Config{}, 0, false, ErrUnsupported
}
return image.Config{ColorModel: color.RGBAModel, Width: width, Height: height}, 24, topDown, nil
case 32:
if offset != fileHeaderLen+infoHeaderLen {
return image.Config{}, 0, false, ErrUnsupported
}
return image.Config{ColorModel: color.RGBAModel, Width: width, Height: height}, 32, topDown, nil
}
return image.Config{}, 0, false, ErrUnsupported
}
func init() {
image.RegisterFormat("bmp", "BM????\x00\x00\x00\x00", Decode, DecodeConfig)
}

75
vendor/golang.org/x/image/bmp/reader_test.go generated vendored Normal file
View file

@ -0,0 +1,75 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bmp
import (
"fmt"
"image"
"os"
"testing"
_ "image/png"
)
const testdataDir = "../testdata/"
func compare(t *testing.T, img0, img1 image.Image) error {
b := img1.Bounds()
if !b.Eq(img0.Bounds()) {
return fmt.Errorf("wrong image size: want %s, got %s", img0.Bounds(), b)
}
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
c0 := img0.At(x, y)
c1 := img1.At(x, y)
r0, g0, b0, a0 := c0.RGBA()
r1, g1, b1, a1 := c1.RGBA()
if r0 != r1 || g0 != g1 || b0 != b1 || a0 != a1 {
return fmt.Errorf("pixel at (%d, %d) has wrong color: want %v, got %v", x, y, c0, c1)
}
}
}
return nil
}
// TestDecode tests that decoding a PNG image and a BMP image result in the
// same pixel data.
func TestDecode(t *testing.T) {
testCases := []string{
"video-001",
"yellow_rose-small",
}
for _, tc := range testCases {
f0, err := os.Open(testdataDir + tc + ".png")
if err != nil {
t.Errorf("%s: Open PNG: %v", tc, err)
continue
}
defer f0.Close()
img0, _, err := image.Decode(f0)
if err != nil {
t.Errorf("%s: Decode PNG: %v", tc, err)
continue
}
f1, err := os.Open(testdataDir + tc + ".bmp")
if err != nil {
t.Errorf("%s: Open BMP: %v", tc, err)
continue
}
defer f1.Close()
img1, _, err := image.Decode(f1)
if err != nil {
t.Errorf("%s: Decode BMP: %v", tc, err)
continue
}
if err := compare(t, img0, img1); err != nil {
t.Errorf("%s: %v", tc, err)
continue
}
}
}

158
vendor/golang.org/x/image/bmp/writer.go generated vendored Normal file
View file

@ -0,0 +1,158 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bmp
import (
"encoding/binary"
"image"
"io"
)
type header struct {
sigBM [2]byte
fileSize uint32
resverved [2]uint16
pixOffset uint32
dibHeaderSize uint32
width uint32
height uint32
colorPlane uint16
bpp uint16
compression uint32
imageSize uint32
xPixelsPerMeter uint32
yPixelsPerMeter uint32
colorUse uint32
colorImportant uint32
}
func encodePaletted(w io.Writer, pix []uint8, dx, dy, stride, step int) error {
var padding []byte
if dx < step {
padding = make([]byte, step-dx)
}
for y := dy - 1; y >= 0; y-- {
min := y*stride + 0
max := y*stride + dx
if _, err := w.Write(pix[min:max]); err != nil {
return err
}
if padding != nil {
if _, err := w.Write(padding); err != nil {
return err
}
}
}
return nil
}
func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride, step int) error {
buf := make([]byte, step)
for y := dy - 1; y >= 0; y-- {
min := y*stride + 0
max := y*stride + dx*4
off := 0
for i := min; i < max; i += 4 {
buf[off+2] = pix[i+0]
buf[off+1] = pix[i+1]
buf[off+0] = pix[i+2]
off += 3
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encode(w io.Writer, m image.Image, step int) error {
b := m.Bounds()
buf := make([]byte, step)
for y := b.Max.Y - 1; y >= b.Min.Y; y-- {
off := 0
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
buf[off+2] = byte(r >> 8)
buf[off+1] = byte(g >> 8)
buf[off+0] = byte(b >> 8)
off += 3
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
// Encode writes the image m to w in BMP format.
func Encode(w io.Writer, m image.Image) error {
d := m.Bounds().Size()
h := &header{
sigBM: [2]byte{'B', 'M'},
fileSize: 14 + 40,
pixOffset: 14 + 40,
dibHeaderSize: 40,
width: uint32(d.X),
height: uint32(d.Y),
colorPlane: 1,
}
var step int
var palette []byte
switch m := m.(type) {
case *image.Gray:
step = (d.X + 3) &^ 3
palette = make([]byte, 1024)
for i := 0; i < 256; i++ {
palette[i*4+0] = uint8(i)
palette[i*4+1] = uint8(i)
palette[i*4+2] = uint8(i)
palette[i*4+3] = 0xFF
}
h.imageSize = uint32(d.Y * step)
h.fileSize += uint32(len(palette)) + h.imageSize
h.pixOffset += uint32(len(palette))
h.bpp = 8
case *image.Paletted:
step = (d.X + 3) &^ 3
palette = make([]byte, 1024)
for i := 0; i < len(m.Palette) && i < 256; i++ {
r, g, b, _ := m.Palette[i].RGBA()
palette[i*4+0] = uint8(b >> 8)
palette[i*4+1] = uint8(g >> 8)
palette[i*4+2] = uint8(r >> 8)
palette[i*4+3] = 0xFF
}
h.imageSize = uint32(d.Y * step)
h.fileSize += uint32(len(palette)) + h.imageSize
h.pixOffset += uint32(len(palette))
h.bpp = 8
default:
step = (3*d.X + 3) &^ 3
h.imageSize = uint32(d.Y * step)
h.fileSize += h.imageSize
h.bpp = 24
}
if err := binary.Write(w, binary.LittleEndian, h); err != nil {
return err
}
if palette != nil {
if err := binary.Write(w, binary.LittleEndian, palette); err != nil {
return err
}
}
switch m := m.(type) {
case *image.Gray:
return encodePaletted(w, m.Pix, d.X, d.Y, m.Stride, step)
case *image.Paletted:
return encodePaletted(w, m.Pix, d.X, d.Y, m.Stride, step)
case *image.RGBA:
return encodeRGBA(w, m.Pix, d.X, d.Y, m.Stride, step)
}
return encode(w, m, step)
}

56
vendor/golang.org/x/image/bmp/writer_test.go generated vendored Normal file
View file

@ -0,0 +1,56 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bmp
import (
"bytes"
"image"
"io/ioutil"
"os"
"testing"
)
func openImage(filename string) (image.Image, error) {
f, err := os.Open(testdataDir + filename)
if err != nil {
return nil, err
}
defer f.Close()
return Decode(f)
}
func TestEncode(t *testing.T) {
img0, err := openImage("video-001.bmp")
if err != nil {
t.Fatal(err)
}
buf := new(bytes.Buffer)
err = Encode(buf, img0)
if err != nil {
t.Fatal(err)
}
img1, err := Decode(buf)
if err != nil {
t.Fatal(err)
}
compare(t, img0, img1)
}
// BenchmarkEncode benchmarks the encoding of an image.
func BenchmarkEncode(b *testing.B) {
img, err := openImage("video-001.bmp")
if err != nil {
b.Fatal(err)
}
s := img.Bounds().Size()
b.SetBytes(int64(s.X * s.Y * 4))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Encode(ioutil.Discard, img)
}
}

69
vendor/golang.org/x/image/tiff/buffer.go generated vendored Normal file
View file

@ -0,0 +1,69 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import "io"
// buffer buffers an io.Reader to satisfy io.ReaderAt.
type buffer struct {
r io.Reader
buf []byte
}
// fill reads data from b.r until the buffer contains at least end bytes.
func (b *buffer) fill(end int) error {
m := len(b.buf)
if end > m {
if end > cap(b.buf) {
newcap := 1024
for newcap < end {
newcap *= 2
}
newbuf := make([]byte, end, newcap)
copy(newbuf, b.buf)
b.buf = newbuf
} else {
b.buf = b.buf[:end]
}
if n, err := io.ReadFull(b.r, b.buf[m:end]); err != nil {
end = m + n
b.buf = b.buf[:end]
return err
}
}
return nil
}
func (b *buffer) ReadAt(p []byte, off int64) (int, error) {
o := int(off)
end := o + len(p)
if int64(end) != off+int64(len(p)) {
return 0, io.ErrUnexpectedEOF
}
err := b.fill(end)
return copy(p, b.buf[o:end]), err
}
// Slice returns a slice of the underlying buffer. The slice contains
// n bytes starting at offset off.
func (b *buffer) Slice(off, n int) ([]byte, error) {
end := off + n
if err := b.fill(end); err != nil {
return nil, err
}
return b.buf[off:end], nil
}
// newReaderAt converts an io.Reader into an io.ReaderAt.
func newReaderAt(r io.Reader) io.ReaderAt {
if ra, ok := r.(io.ReaderAt); ok {
return ra
}
return &buffer{
r: r,
buf: make([]byte, 0, 1024),
}
}

36
vendor/golang.org/x/image/tiff/buffer_test.go generated vendored Normal file
View file

@ -0,0 +1,36 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import (
"io"
"strings"
"testing"
)
var readAtTests = []struct {
n int
off int64
s string
err error
}{
{2, 0, "ab", nil},
{6, 0, "abcdef", nil},
{3, 3, "def", nil},
{3, 5, "f", io.EOF},
{3, 6, "", io.EOF},
}
func TestReadAt(t *testing.T) {
r := newReaderAt(strings.NewReader("abcdef"))
b := make([]byte, 10)
for _, test := range readAtTests {
n, err := r.ReadAt(b[:test.n], test.off)
s := string(b[:n])
if s != test.s || err != test.err {
t.Errorf("buffer.ReadAt(<%v bytes>, %v): got %v, %q; want %v, %q", test.n, test.off, err, s, test.err, test.s)
}
}
}

58
vendor/golang.org/x/image/tiff/compress.go generated vendored Normal file
View file

@ -0,0 +1,58 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import (
"bufio"
"io"
)
type byteReader interface {
io.Reader
io.ByteReader
}
// unpackBits decodes the PackBits-compressed data in src and returns the
// uncompressed data.
//
// The PackBits compression format is described in section 9 (p. 42)
// of the TIFF spec.
func unpackBits(r io.Reader) ([]byte, error) {
buf := make([]byte, 128)
dst := make([]byte, 0, 1024)
br, ok := r.(byteReader)
if !ok {
br = bufio.NewReader(r)
}
for {
b, err := br.ReadByte()
if err != nil {
if err == io.EOF {
return dst, nil
}
return nil, err
}
code := int(int8(b))
switch {
case code >= 0:
n, err := io.ReadFull(br, buf[:code+1])
if err != nil {
return nil, err
}
dst = append(dst, buf[:n]...)
case code == -128:
// No-op.
default:
if b, err = br.ReadByte(); err != nil {
return nil, err
}
for j := 0; j < 1-code; j++ {
buf[j] = b
}
dst = append(dst, buf[:1-code]...)
}
}
}

133
vendor/golang.org/x/image/tiff/consts.go generated vendored Normal file
View file

@ -0,0 +1,133 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
// A tiff image file contains one or more images. The metadata
// of each image is contained in an Image File Directory (IFD),
// which contains entries of 12 bytes each and is described
// on page 14-16 of the specification. An IFD entry consists of
//
// - a tag, which describes the signification of the entry,
// - the data type and length of the entry,
// - the data itself or a pointer to it if it is more than 4 bytes.
//
// The presence of a length means that each IFD is effectively an array.
const (
leHeader = "II\x2A\x00" // Header for little-endian files.
beHeader = "MM\x00\x2A" // Header for big-endian files.
ifdLen = 12 // Length of an IFD entry in bytes.
)
// Data types (p. 14-16 of the spec).
const (
dtByte = 1
dtASCII = 2
dtShort = 3
dtLong = 4
dtRational = 5
)
// The length of one instance of each data type in bytes.
var lengths = [...]uint32{0, 1, 1, 2, 4, 8}
// Tags (see p. 28-41 of the spec).
const (
tImageWidth = 256
tImageLength = 257
tBitsPerSample = 258
tCompression = 259
tPhotometricInterpretation = 262
tStripOffsets = 273
tSamplesPerPixel = 277
tRowsPerStrip = 278
tStripByteCounts = 279
tTileWidth = 322
tTileLength = 323
tTileOffsets = 324
tTileByteCounts = 325
tXResolution = 282
tYResolution = 283
tResolutionUnit = 296
tPredictor = 317
tColorMap = 320
tExtraSamples = 338
tSampleFormat = 339
)
// Compression types (defined in various places in the spec and supplements).
const (
cNone = 1
cCCITT = 2
cG3 = 3 // Group 3 Fax.
cG4 = 4 // Group 4 Fax.
cLZW = 5
cJPEGOld = 6 // Superseded by cJPEG.
cJPEG = 7
cDeflate = 8 // zlib compression.
cPackBits = 32773
cDeflateOld = 32946 // Superseded by cDeflate.
)
// Photometric interpretation values (see p. 37 of the spec).
const (
pWhiteIsZero = 0
pBlackIsZero = 1
pRGB = 2
pPaletted = 3
pTransMask = 4 // transparency mask
pCMYK = 5
pYCbCr = 6
pCIELab = 8
)
// Values for the tPredictor tag (page 64-65 of the spec).
const (
prNone = 1
prHorizontal = 2
)
// Values for the tResolutionUnit tag (page 18).
const (
resNone = 1
resPerInch = 2 // Dots per inch.
resPerCM = 3 // Dots per centimeter.
)
// imageMode represents the mode of the image.
type imageMode int
const (
mBilevel imageMode = iota
mPaletted
mGray
mGrayInvert
mRGB
mRGBA
mNRGBA
)
// CompressionType describes the type of compression used in Options.
type CompressionType int
const (
Uncompressed CompressionType = iota
Deflate
)
// specValue returns the compression type constant from the TIFF spec that
// is equivalent to c.
func (c CompressionType) specValue() uint32 {
switch c {
case Deflate:
return cDeflate
}
return cNone
}

272
vendor/golang.org/x/image/tiff/lzw/reader.go generated vendored Normal file
View file

@ -0,0 +1,272 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lzw implements the Lempel-Ziv-Welch compressed data format,
// described in T. A. Welch, ``A Technique for High-Performance Data
// Compression'', Computer, 17(6) (June 1984), pp 8-19.
//
// In particular, it implements LZW as used by the TIFF file format, including
// an "off by one" algorithmic difference when compared to standard LZW.
package lzw
/*
This file was branched from src/pkg/compress/lzw/reader.go in the
standard library. Differences from the original are marked with "NOTE".
The tif_lzw.c file in the libtiff C library has this comment:
----
The 5.0 spec describes a different algorithm than Aldus
implements. Specifically, Aldus does code length transitions
one code earlier than should be done (for real LZW).
Earlier versions of this library implemented the correct
LZW algorithm, but emitted codes in a bit order opposite
to the TIFF spec. Thus, to maintain compatibility w/ Aldus
we interpret MSB-LSB ordered codes to be images written w/
old versions of this library, but otherwise adhere to the
Aldus "off by one" algorithm.
----
The Go code doesn't read (invalid) TIFF files written by old versions of
libtiff, but the LZW algorithm in this package still differs from the one in
Go's standard package library to accomodate this "off by one" in valid TIFFs.
*/
import (
"bufio"
"errors"
"fmt"
"io"
)
// Order specifies the bit ordering in an LZW data stream.
type Order int
const (
// LSB means Least Significant Bits first, as used in the GIF file format.
LSB Order = iota
// MSB means Most Significant Bits first, as used in the TIFF and PDF
// file formats.
MSB
)
const (
maxWidth = 12
decoderInvalidCode = 0xffff
flushBuffer = 1 << maxWidth
)
// decoder is the state from which the readXxx method converts a byte
// stream into a code stream.
type decoder struct {
r io.ByteReader
bits uint32
nBits uint
width uint
read func(*decoder) (uint16, error) // readLSB or readMSB
litWidth int // width in bits of literal codes
err error
// The first 1<<litWidth codes are literal codes.
// The next two codes mean clear and EOF.
// Other valid codes are in the range [lo, hi] where lo := clear + 2,
// with the upper bound incrementing on each code seen.
// overflow is the code at which hi overflows the code width. NOTE: TIFF's LZW is "off by one".
// last is the most recently seen code, or decoderInvalidCode.
clear, eof, hi, overflow, last uint16
// Each code c in [lo, hi] expands to two or more bytes. For c != hi:
// suffix[c] is the last of these bytes.
// prefix[c] is the code for all but the last byte.
// This code can either be a literal code or another code in [lo, c).
// The c == hi case is a special case.
suffix [1 << maxWidth]uint8
prefix [1 << maxWidth]uint16
// output is the temporary output buffer.
// Literal codes are accumulated from the start of the buffer.
// Non-literal codes decode to a sequence of suffixes that are first
// written right-to-left from the end of the buffer before being copied
// to the start of the buffer.
// It is flushed when it contains >= 1<<maxWidth bytes,
// so that there is always room to decode an entire code.
output [2 * 1 << maxWidth]byte
o int // write index into output
toRead []byte // bytes to return from Read
}
// readLSB returns the next code for "Least Significant Bits first" data.
func (d *decoder) readLSB() (uint16, error) {
for d.nBits < d.width {
x, err := d.r.ReadByte()
if err != nil {
return 0, err
}
d.bits |= uint32(x) << d.nBits
d.nBits += 8
}
code := uint16(d.bits & (1<<d.width - 1))
d.bits >>= d.width
d.nBits -= d.width
return code, nil
}
// readMSB returns the next code for "Most Significant Bits first" data.
func (d *decoder) readMSB() (uint16, error) {
for d.nBits < d.width {
x, err := d.r.ReadByte()
if err != nil {
return 0, err
}
d.bits |= uint32(x) << (24 - d.nBits)
d.nBits += 8
}
code := uint16(d.bits >> (32 - d.width))
d.bits <<= d.width
d.nBits -= d.width
return code, nil
}
func (d *decoder) Read(b []byte) (int, error) {
for {
if len(d.toRead) > 0 {
n := copy(b, d.toRead)
d.toRead = d.toRead[n:]
return n, nil
}
if d.err != nil {
return 0, d.err
}
d.decode()
}
}
// decode decompresses bytes from r and leaves them in d.toRead.
// read specifies how to decode bytes into codes.
// litWidth is the width in bits of literal codes.
func (d *decoder) decode() {
// Loop over the code stream, converting codes into decompressed bytes.
for {
code, err := d.read(d)
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
d.err = err
return
}
switch {
case code < d.clear:
// We have a literal code.
d.output[d.o] = uint8(code)
d.o++
if d.last != decoderInvalidCode {
// Save what the hi code expands to.
d.suffix[d.hi] = uint8(code)
d.prefix[d.hi] = d.last
}
case code == d.clear:
d.width = 1 + uint(d.litWidth)
d.hi = d.eof
d.overflow = 1 << d.width
d.last = decoderInvalidCode
continue
case code == d.eof:
d.flush()
d.err = io.EOF
return
case code <= d.hi:
c, i := code, len(d.output)-1
if code == d.hi {
// code == hi is a special case which expands to the last expansion
// followed by the head of the last expansion. To find the head, we walk
// the prefix chain until we find a literal code.
c = d.last
for c >= d.clear {
c = d.prefix[c]
}
d.output[i] = uint8(c)
i--
c = d.last
}
// Copy the suffix chain into output and then write that to w.
for c >= d.clear {
d.output[i] = d.suffix[c]
i--
c = d.prefix[c]
}
d.output[i] = uint8(c)
d.o += copy(d.output[d.o:], d.output[i:])
if d.last != decoderInvalidCode {
// Save what the hi code expands to.
d.suffix[d.hi] = uint8(c)
d.prefix[d.hi] = d.last
}
default:
d.err = errors.New("lzw: invalid code")
return
}
d.last, d.hi = code, d.hi+1
if d.hi+1 >= d.overflow { // NOTE: the "+1" is where TIFF's LZW differs from the standard algorithm.
if d.width == maxWidth {
d.last = decoderInvalidCode
} else {
d.width++
d.overflow <<= 1
}
}
if d.o >= flushBuffer {
d.flush()
return
}
}
}
func (d *decoder) flush() {
d.toRead = d.output[:d.o]
d.o = 0
}
var errClosed = errors.New("compress/lzw: reader/writer is closed")
func (d *decoder) Close() error {
d.err = errClosed // in case any Reads come along
return nil
}
// NewReader creates a new io.ReadCloser.
// Reads from the returned io.ReadCloser read and decompress data from r.
// It is the caller's responsibility to call Close on the ReadCloser when
// finished reading.
// The number of bits to use for literal codes, litWidth, must be in the
// range [2,8] and is typically 8.
func NewReader(r io.Reader, order Order, litWidth int) io.ReadCloser {
d := new(decoder)
switch order {
case LSB:
d.read = (*decoder).readLSB
case MSB:
d.read = (*decoder).readMSB
default:
d.err = errors.New("lzw: unknown order")
return d
}
if litWidth < 2 || 8 < litWidth {
d.err = fmt.Errorf("lzw: litWidth %d out of range", litWidth)
return d
}
if br, ok := r.(io.ByteReader); ok {
d.r = br
} else {
d.r = bufio.NewReader(r)
}
d.litWidth = litWidth
d.width = 1 + uint(litWidth)
d.clear = uint16(1) << uint(litWidth)
d.eof, d.hi = d.clear+1, d.clear+1
d.overflow = uint16(1) << d.width
d.last = decoderInvalidCode
return d
}

605
vendor/golang.org/x/image/tiff/reader.go generated vendored Normal file
View file

@ -0,0 +1,605 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tiff implements a TIFF image decoder and encoder.
//
// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
package tiff
import (
"compress/zlib"
"encoding/binary"
"fmt"
"image"
"image/color"
"io"
"io/ioutil"
"golang.org/x/image/tiff/lzw"
)
// A FormatError reports that the input is not a valid TIFF image.
type FormatError string
func (e FormatError) Error() string {
return "tiff: invalid format: " + string(e)
}
// An UnsupportedError reports that the input uses a valid but
// unimplemented feature.
type UnsupportedError string
func (e UnsupportedError) Error() string {
return "tiff: unsupported feature: " + string(e)
}
// An InternalError reports that an internal error was encountered.
type InternalError string
func (e InternalError) Error() string {
return "tiff: internal error: " + string(e)
}
type decoder struct {
r io.ReaderAt
byteOrder binary.ByteOrder
config image.Config
mode imageMode
bpp uint
features map[int][]uint
palette []color.Color
buf []byte
off int // Current offset in buf.
v uint32 // Buffer value for reading with arbitrary bit depths.
nbits uint // Remaining number of bits in v.
}
// firstVal returns the first uint of the features entry with the given tag,
// or 0 if the tag does not exist.
func (d *decoder) firstVal(tag int) uint {
f := d.features[tag]
if len(f) == 0 {
return 0
}
return f[0]
}
// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
// or Long type, and returns the decoded uint values.
func (d *decoder) ifdUint(p []byte) (u []uint, err error) {
var raw []byte
datatype := d.byteOrder.Uint16(p[2:4])
count := d.byteOrder.Uint32(p[4:8])
if datalen := lengths[datatype] * count; datalen > 4 {
// The IFD contains a pointer to the real value.
raw = make([]byte, datalen)
_, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
} else {
raw = p[8 : 8+datalen]
}
if err != nil {
return nil, err
}
u = make([]uint, count)
switch datatype {
case dtByte:
for i := uint32(0); i < count; i++ {
u[i] = uint(raw[i])
}
case dtShort:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
}
case dtLong:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
}
default:
return nil, UnsupportedError("data type")
}
return u, nil
}
// parseIFD decides whether the the IFD entry in p is "interesting" and
// stows away the data in the decoder.
func (d *decoder) parseIFD(p []byte) error {
tag := d.byteOrder.Uint16(p[0:2])
switch tag {
case tBitsPerSample,
tExtraSamples,
tPhotometricInterpretation,
tCompression,
tPredictor,
tStripOffsets,
tStripByteCounts,
tRowsPerStrip,
tTileWidth,
tTileLength,
tTileOffsets,
tTileByteCounts,
tImageLength,
tImageWidth:
val, err := d.ifdUint(p)
if err != nil {
return err
}
d.features[int(tag)] = val
case tColorMap:
val, err := d.ifdUint(p)
if err != nil {
return err
}
numcolors := len(val) / 3
if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
return FormatError("bad ColorMap length")
}
d.palette = make([]color.Color, numcolors)
for i := 0; i < numcolors; i++ {
d.palette[i] = color.RGBA64{
uint16(val[i]),
uint16(val[i+numcolors]),
uint16(val[i+2*numcolors]),
0xffff,
}
}
case tSampleFormat:
// Page 27 of the spec: If the SampleFormat is present and
// the value is not 1 [= unsigned integer data], a Baseline
// TIFF reader that cannot handle the SampleFormat value
// must terminate the import process gracefully.
val, err := d.ifdUint(p)
if err != nil {
return err
}
for _, v := range val {
if v != 1 {
return UnsupportedError("sample format")
}
}
}
return nil
}
// readBits reads n bits from the internal buffer starting at the current offset.
func (d *decoder) readBits(n uint) uint32 {
for d.nbits < n {
d.v <<= 8
d.v |= uint32(d.buf[d.off])
d.off++
d.nbits += 8
}
d.nbits -= n
rv := d.v >> d.nbits
d.v &^= rv << d.nbits
return rv
}
// flushBits discards the unread bits in the buffer used by readBits.
// It is used at the end of a line.
func (d *decoder) flushBits() {
d.v = 0
d.nbits = 0
}
// minInt returns the smaller of x or y.
func minInt(a, b int) int {
if a <= b {
return a
}
return b
}
// decode decodes the raw data of an image.
// It reads from d.buf and writes the strip or tile into dst.
func (d *decoder) decode(dst image.Image, xmin, ymin, xmax, ymax int) error {
d.off = 0
// Apply horizontal predictor if necessary.
// In this case, p contains the color difference to the preceding pixel.
// See page 64-65 of the spec.
if d.firstVal(tPredictor) == prHorizontal {
if d.bpp == 16 {
var off int
spp := len(d.features[tBitsPerSample]) // samples per pixel
bpp := spp * 2 // bytes per pixel
for y := ymin; y < ymax; y++ {
off += spp * 2
for x := 0; x < (xmax-xmin-1)*bpp; x += 2 {
v0 := d.byteOrder.Uint16(d.buf[off-bpp : off-bpp+2])
v1 := d.byteOrder.Uint16(d.buf[off : off+2])
d.byteOrder.PutUint16(d.buf[off:off+2], v1+v0)
off += 2
}
}
} else if d.bpp == 8 {
var off int
spp := len(d.features[tBitsPerSample]) // samples per pixel
for y := ymin; y < ymax; y++ {
off += spp
for x := 0; x < (xmax-xmin-1)*spp; x++ {
d.buf[off] += d.buf[off-spp]
off++
}
}
}
}
rMaxX := minInt(xmax, dst.Bounds().Max.X)
rMaxY := minInt(ymax, dst.Bounds().Max.Y)
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img := dst.(*image.Gray16)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
v := d.byteOrder.Uint16(d.buf[d.off : d.off+2])
d.off += 2
if d.mode == mGrayInvert {
v = 0xffff - v
}
img.SetGray16(x, y, color.Gray16{v})
}
}
} else {
img := dst.(*image.Gray)
max := uint32((1 << d.bpp) - 1)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
v := uint8(d.readBits(d.bpp) * 0xff / max)
if d.mode == mGrayInvert {
v = 0xff - v
}
img.SetGray(x, y, color.Gray{v})
}
d.flushBits()
}
}
case mPaletted:
img := dst.(*image.Paletted)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
img.SetColorIndex(x, y, uint8(d.readBits(d.bpp)))
}
d.flushBits()
}
case mRGB:
if d.bpp == 16 {
img := dst.(*image.RGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
d.off += 6
img.SetRGBA64(x, y, color.RGBA64{r, g, b, 0xffff})
}
}
} else {
img := dst.(*image.RGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
off := (y - ymin) * (xmax - xmin) * 3
for i := min; i < max; i += 4 {
img.Pix[i+0] = d.buf[off+0]
img.Pix[i+1] = d.buf[off+1]
img.Pix[i+2] = d.buf[off+2]
img.Pix[i+3] = 0xff
off += 3
}
}
}
case mNRGBA:
if d.bpp == 16 {
img := dst.(*image.NRGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
d.off += 8
img.SetNRGBA64(x, y, color.NRGBA64{r, g, b, a})
}
}
} else {
img := dst.(*image.NRGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
buf := d.buf[(y-ymin)*(xmax-xmin)*4 : (y-ymin+1)*(xmax-xmin)*4]
copy(img.Pix[min:max], buf)
}
}
case mRGBA:
if d.bpp == 16 {
img := dst.(*image.RGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
d.off += 8
img.SetRGBA64(x, y, color.RGBA64{r, g, b, a})
}
}
} else {
img := dst.(*image.RGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
buf := d.buf[(y-ymin)*(xmax-xmin)*4 : (y-ymin+1)*(xmax-xmin)*4]
copy(img.Pix[min:max], buf)
}
}
}
return nil
}
func newDecoder(r io.Reader) (*decoder, error) {
d := &decoder{
r: newReaderAt(r),
features: make(map[int][]uint),
}
p := make([]byte, 8)
if _, err := d.r.ReadAt(p, 0); err != nil {
return nil, err
}
switch string(p[0:4]) {
case leHeader:
d.byteOrder = binary.LittleEndian
case beHeader:
d.byteOrder = binary.BigEndian
default:
return nil, FormatError("malformed header")
}
ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))
// The first two bytes contain the number of entries (12 bytes each).
if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
return nil, err
}
numItems := int(d.byteOrder.Uint16(p[0:2]))
// All IFD entries are read in one chunk.
p = make([]byte, ifdLen*numItems)
if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
return nil, err
}
for i := 0; i < len(p); i += ifdLen {
if err := d.parseIFD(p[i : i+ifdLen]); err != nil {
return nil, err
}
}
d.config.Width = int(d.firstVal(tImageWidth))
d.config.Height = int(d.firstVal(tImageLength))
if _, ok := d.features[tBitsPerSample]; !ok {
return nil, FormatError("BitsPerSample tag missing")
}
d.bpp = d.firstVal(tBitsPerSample)
// Determine the image mode.
switch d.firstVal(tPhotometricInterpretation) {
case pRGB:
if d.bpp == 16 {
for _, b := range d.features[tBitsPerSample] {
if b != 16 {
return nil, FormatError("wrong number of samples for 16bit RGB")
}
}
} else {
for _, b := range d.features[tBitsPerSample] {
if b != 8 {
return nil, FormatError("wrong number of samples for 8bit RGB")
}
}
}
// RGB images normally have 3 samples per pixel.
// If there are more, ExtraSamples (p. 31-32 of the spec)
// gives their meaning (usually an alpha channel).
//
// This implementation does not support extra samples
// of an unspecified type.
switch len(d.features[tBitsPerSample]) {
case 3:
d.mode = mRGB
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
case 4:
switch d.firstVal(tExtraSamples) {
case 1:
d.mode = mRGBA
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
case 2:
d.mode = mNRGBA
if d.bpp == 16 {
d.config.ColorModel = color.NRGBA64Model
} else {
d.config.ColorModel = color.NRGBAModel
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
case pPaletted:
d.mode = mPaletted
d.config.ColorModel = color.Palette(d.palette)
case pWhiteIsZero:
d.mode = mGrayInvert
if d.bpp == 16 {
d.config.ColorModel = color.Gray16Model
} else {
d.config.ColorModel = color.GrayModel
}
case pBlackIsZero:
d.mode = mGray
if d.bpp == 16 {
d.config.ColorModel = color.Gray16Model
} else {
d.config.ColorModel = color.GrayModel
}
default:
return nil, UnsupportedError("color model")
}
return d, nil
}
// DecodeConfig returns the color model and dimensions of a TIFF image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
d, err := newDecoder(r)
if err != nil {
return image.Config{}, err
}
return d.config, nil
}
// Decode reads a TIFF image from r and returns it as an image.Image.
// The type of Image returned depends on the contents of the TIFF.
func Decode(r io.Reader) (img image.Image, err error) {
d, err := newDecoder(r)
if err != nil {
return
}
blockPadding := false
blockWidth := d.config.Width
blockHeight := d.config.Height
blocksAcross := 1
blocksDown := 1
var blockOffsets, blockCounts []uint
if int(d.firstVal(tTileWidth)) != 0 {
blockPadding = true
blockWidth = int(d.firstVal(tTileWidth))
blockHeight = int(d.firstVal(tTileLength))
blocksAcross = (d.config.Width + blockWidth - 1) / blockWidth
blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
blockCounts = d.features[tTileByteCounts]
blockOffsets = d.features[tTileOffsets]
} else {
if int(d.firstVal(tRowsPerStrip)) != 0 {
blockHeight = int(d.firstVal(tRowsPerStrip))
}
blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
blockOffsets = d.features[tStripOffsets]
blockCounts = d.features[tStripByteCounts]
}
// Check if we have the right number of strips/tiles, offsets and counts.
if n := blocksAcross * blocksDown; len(blockOffsets) < n || len(blockCounts) < n {
return nil, FormatError("inconsistent header")
}
imgRect := image.Rect(0, 0, d.config.Width, d.config.Height)
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img = image.NewGray16(imgRect)
} else {
img = image.NewGray(imgRect)
}
case mPaletted:
img = image.NewPaletted(imgRect, d.palette)
case mNRGBA:
if d.bpp == 16 {
img = image.NewNRGBA64(imgRect)
} else {
img = image.NewNRGBA(imgRect)
}
case mRGB, mRGBA:
if d.bpp == 16 {
img = image.NewRGBA64(imgRect)
} else {
img = image.NewRGBA(imgRect)
}
}
for i := 0; i < blocksAcross; i++ {
blkW := blockWidth
if !blockPadding && i == blocksAcross-1 && d.config.Width%blockWidth != 0 {
blkW = d.config.Width % blockWidth
}
for j := 0; j < blocksDown; j++ {
blkH := blockHeight
if !blockPadding && j == blocksDown-1 && d.config.Height%blockHeight != 0 {
blkH = d.config.Height % blockHeight
}
offset := int64(blockOffsets[j*blocksAcross+i])
n := int64(blockCounts[j*blocksAcross+i])
switch d.firstVal(tCompression) {
// According to the spec, Compression does not have a default value,
// but some tools interpret a missing Compression value as none so we do
// the same.
case cNone, 0:
if b, ok := d.r.(*buffer); ok {
d.buf, err = b.Slice(int(offset), int(n))
} else {
d.buf = make([]byte, n)
_, err = d.r.ReadAt(d.buf, offset)
}
case cLZW:
r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8)
d.buf, err = ioutil.ReadAll(r)
r.Close()
case cDeflate, cDeflateOld:
r, err := zlib.NewReader(io.NewSectionReader(d.r, offset, n))
if err != nil {
return nil, err
}
d.buf, err = ioutil.ReadAll(r)
r.Close()
case cPackBits:
d.buf, err = unpackBits(io.NewSectionReader(d.r, offset, n))
default:
err = UnsupportedError(fmt.Sprintf("compression value %d", d.firstVal(tCompression)))
}
if err != nil {
return nil, err
}
xmin := i * blockWidth
ymin := j * blockHeight
xmax := xmin + blkW
ymax := ymin + blkH
err = d.decode(img, xmin, ymin, xmax, ymax)
if err != nil {
return nil, err
}
}
}
return
}
func init() {
image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
}

183
vendor/golang.org/x/image/tiff/reader_test.go generated vendored Normal file
View file

@ -0,0 +1,183 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import (
"image"
"io/ioutil"
"os"
"strings"
"testing"
_ "image/png"
)
const testdataDir = "../testdata/"
// Read makes *buffer implements io.Reader, so that we can pass one to Decode.
func (*buffer) Read([]byte) (int, error) {
panic("unimplemented")
}
func load(name string) (image.Image, error) {
f, err := os.Open(testdataDir + name)
if err != nil {
return nil, err
}
defer f.Close()
img, _, err := image.Decode(f)
if err != nil {
return nil, err
}
return img, nil
}
// TestNoRPS tries to decode an image that has no RowsPerStrip tag.
// The tag is mandatory according to the spec but some software omits
// it in the case of a single strip.
func TestNoRPS(t *testing.T) {
_, err := load("no_rps.tiff")
if err != nil {
t.Fatal(err)
}
}
// TestNoCompression tries to decode an images that has no Compression tag.
// This tag is mandatory, but most tools interpret a missing value as no compression.
func TestNoCompression(t *testing.T) {
_, err := load("no_compress.tiff")
if err != nil {
t.Fatal(err)
}
}
// TestUnpackBits tests the decoding of PackBits-encoded data.
func TestUnpackBits(t *testing.T) {
var unpackBitsTests = []struct {
compressed string
uncompressed string
}{{
// Example data from Wikipedia.
"\xfe\xaa\x02\x80\x00\x2a\xfd\xaa\x03\x80\x00\x2a\x22\xf7\xaa",
"\xaa\xaa\xaa\x80\x00\x2a\xaa\xaa\xaa\xaa\x80\x00\x2a\x22\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
}}
for _, u := range unpackBitsTests {
buf, err := unpackBits(strings.NewReader(u.compressed))
if err != nil {
t.Fatal(err)
}
if string(buf) != u.uncompressed {
t.Fatalf("unpackBits: want %x, got %x", u.uncompressed, buf)
}
}
}
func compare(t *testing.T, img0, img1 image.Image) {
b0 := img0.Bounds()
b1 := img1.Bounds()
if b0.Dx() != b1.Dx() || b0.Dy() != b1.Dy() {
t.Fatalf("wrong image size: want %s, got %s", b0, b1)
}
x1 := b1.Min.X - b0.Min.X
y1 := b1.Min.Y - b0.Min.Y
for y := b0.Min.Y; y < b0.Max.Y; y++ {
for x := b0.Min.X; x < b0.Max.X; x++ {
c0 := img0.At(x, y)
c1 := img1.At(x+x1, y+y1)
r0, g0, b0, a0 := c0.RGBA()
r1, g1, b1, a1 := c1.RGBA()
if r0 != r1 || g0 != g1 || b0 != b1 || a0 != a1 {
t.Fatalf("pixel at (%d, %d) has wrong color: want %v, got %v", x, y, c0, c1)
}
}
}
}
// TestDecode tests that decoding a PNG image and a TIFF image result in the
// same pixel data.
func TestDecode(t *testing.T) {
img0, err := load("video-001.png")
if err != nil {
t.Fatal(err)
}
img1, err := load("video-001.tiff")
if err != nil {
t.Fatal(err)
}
img2, err := load("video-001-strip-64.tiff")
if err != nil {
t.Fatal(err)
}
img3, err := load("video-001-tile-64x64.tiff")
if err != nil {
t.Fatal(err)
}
img4, err := load("video-001-16bit.tiff")
if err != nil {
t.Fatal(err)
}
compare(t, img0, img1)
compare(t, img0, img2)
compare(t, img0, img3)
compare(t, img0, img4)
}
// TestDecodeLZW tests that decoding a PNG image and a LZW-compressed TIFF image
// result in the same pixel data.
func TestDecodeLZW(t *testing.T) {
img0, err := load("blue-purple-pink.png")
if err != nil {
t.Fatal(err)
}
img1, err := load("blue-purple-pink.lzwcompressed.tiff")
if err != nil {
t.Fatal(err)
}
compare(t, img0, img1)
}
// TestDecompress tests that decoding some TIFF images that use different
// compression formats result in the same pixel data.
func TestDecompress(t *testing.T) {
var decompressTests = []string{
"bw-uncompressed.tiff",
"bw-deflate.tiff",
"bw-packbits.tiff",
}
var img0 image.Image
for _, name := range decompressTests {
img1, err := load(name)
if err != nil {
t.Fatalf("decoding %s: %v", name, err)
}
if img0 == nil {
img0 = img1
continue
}
compare(t, img0, img1)
}
}
// benchmarkDecode benchmarks the decoding of an image.
func benchmarkDecode(b *testing.B, filename string) {
b.StopTimer()
contents, err := ioutil.ReadFile(testdataDir + filename)
if err != nil {
panic(err)
}
r := &buffer{buf: contents}
b.StartTimer()
for i := 0; i < b.N; i++ {
_, err := Decode(r)
if err != nil {
b.Fatal("Decode:", err)
}
}
}
func BenchmarkDecodeCompressed(b *testing.B) { benchmarkDecode(b, "video-001.tiff") }
func BenchmarkDecodeUncompressed(b *testing.B) { benchmarkDecode(b, "video-001-uncompressed.tiff") }

438
vendor/golang.org/x/image/tiff/writer.go generated vendored Normal file
View file

@ -0,0 +1,438 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import (
"bytes"
"compress/zlib"
"encoding/binary"
"image"
"io"
"sort"
)
// The TIFF format allows to choose the order of the different elements freely.
// The basic structure of a TIFF file written by this package is:
//
// 1. Header (8 bytes).
// 2. Image data.
// 3. Image File Directory (IFD).
// 4. "Pointer area" for larger entries in the IFD.
// We only write little-endian TIFF files.
var enc = binary.LittleEndian
// An ifdEntry is a single entry in an Image File Directory.
// A value of type dtRational is composed of two 32-bit values,
// thus data contains two uints (numerator and denominator) for a single number.
type ifdEntry struct {
tag int
datatype int
data []uint32
}
func (e ifdEntry) putData(p []byte) {
for _, d := range e.data {
switch e.datatype {
case dtByte, dtASCII:
p[0] = byte(d)
p = p[1:]
case dtShort:
enc.PutUint16(p, uint16(d))
p = p[2:]
case dtLong, dtRational:
enc.PutUint32(p, uint32(d))
p = p[4:]
}
}
}
type byTag []ifdEntry
func (d byTag) Len() int { return len(d) }
func (d byTag) Less(i, j int) bool { return d[i].tag < d[j].tag }
func (d byTag) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
func encodeGray(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
if !predictor {
return writePix(w, pix, dy, dx, stride)
}
buf := make([]byte, dx)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx
off := 0
var v0 uint8
for i := min; i < max; i++ {
v1 := pix[i]
buf[off] = v1 - v0
v0 = v1
off++
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encodeGray16(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
buf := make([]byte, dx*2)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx*2
off := 0
var v0 uint16
for i := min; i < max; i += 2 {
// An image.Gray16's Pix is in big-endian order.
v1 := uint16(pix[i])<<8 | uint16(pix[i+1])
if predictor {
v0, v1 = v1, v1-v0
}
// We only write little-endian TIFF files.
buf[off+0] = byte(v1)
buf[off+1] = byte(v1 >> 8)
off += 2
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
if !predictor {
return writePix(w, pix, dy, dx*4, stride)
}
buf := make([]byte, dx*4)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx*4
off := 0
var r0, g0, b0, a0 uint8
for i := min; i < max; i += 4 {
r1, g1, b1, a1 := pix[i+0], pix[i+1], pix[i+2], pix[i+3]
buf[off+0] = r1 - r0
buf[off+1] = g1 - g0
buf[off+2] = b1 - b0
buf[off+3] = a1 - a0
off += 4
r0, g0, b0, a0 = r1, g1, b1, a1
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encodeRGBA64(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
buf := make([]byte, dx*8)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx*8
off := 0
var r0, g0, b0, a0 uint16
for i := min; i < max; i += 8 {
// An image.RGBA64's Pix is in big-endian order.
r1 := uint16(pix[i+0])<<8 | uint16(pix[i+1])
g1 := uint16(pix[i+2])<<8 | uint16(pix[i+3])
b1 := uint16(pix[i+4])<<8 | uint16(pix[i+5])
a1 := uint16(pix[i+6])<<8 | uint16(pix[i+7])
if predictor {
r0, r1 = r1, r1-r0
g0, g1 = g1, g1-g0
b0, b1 = b1, b1-b0
a0, a1 = a1, a1-a0
}
// We only write little-endian TIFF files.
buf[off+0] = byte(r1)
buf[off+1] = byte(r1 >> 8)
buf[off+2] = byte(g1)
buf[off+3] = byte(g1 >> 8)
buf[off+4] = byte(b1)
buf[off+5] = byte(b1 >> 8)
buf[off+6] = byte(a1)
buf[off+7] = byte(a1 >> 8)
off += 8
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encode(w io.Writer, m image.Image, predictor bool) error {
bounds := m.Bounds()
buf := make([]byte, 4*bounds.Dx())
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
off := 0
if predictor {
var r0, g0, b0, a0 uint8
for x := bounds.Min.X; x < bounds.Max.X; x++ {
r, g, b, a := m.At(x, y).RGBA()
r1 := uint8(r >> 8)
g1 := uint8(g >> 8)
b1 := uint8(b >> 8)
a1 := uint8(a >> 8)
buf[off+0] = r1 - r0
buf[off+1] = g1 - g0
buf[off+2] = b1 - b0
buf[off+3] = a1 - a0
off += 4
r0, g0, b0, a0 = r1, g1, b1, a1
}
} else {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
r, g, b, a := m.At(x, y).RGBA()
buf[off+0] = uint8(r >> 8)
buf[off+1] = uint8(g >> 8)
buf[off+2] = uint8(b >> 8)
buf[off+3] = uint8(a >> 8)
off += 4
}
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
// writePix writes the internal byte array of an image to w. It is less general
// but much faster then encode. writePix is used when pix directly
// corresponds to one of the TIFF image types.
func writePix(w io.Writer, pix []byte, nrows, length, stride int) error {
if length == stride {
_, err := w.Write(pix[:nrows*length])
return err
}
for ; nrows > 0; nrows-- {
if _, err := w.Write(pix[:length]); err != nil {
return err
}
pix = pix[stride:]
}
return nil
}
func writeIFD(w io.Writer, ifdOffset int, d []ifdEntry) error {
var buf [ifdLen]byte
// Make space for "pointer area" containing IFD entry data
// longer than 4 bytes.
parea := make([]byte, 1024)
pstart := ifdOffset + ifdLen*len(d) + 6
var o int // Current offset in parea.
// The IFD has to be written with the tags in ascending order.
sort.Sort(byTag(d))
// Write the number of entries in this IFD.
if err := binary.Write(w, enc, uint16(len(d))); err != nil {
return err
}
for _, ent := range d {
enc.PutUint16(buf[0:2], uint16(ent.tag))
enc.PutUint16(buf[2:4], uint16(ent.datatype))
count := uint32(len(ent.data))
if ent.datatype == dtRational {
count /= 2
}
enc.PutUint32(buf[4:8], count)
datalen := int(count * lengths[ent.datatype])
if datalen <= 4 {
ent.putData(buf[8:12])
} else {
if (o + datalen) > len(parea) {
newlen := len(parea) + 1024
for (o + datalen) > newlen {
newlen += 1024
}
newarea := make([]byte, newlen)
copy(newarea, parea)
parea = newarea
}
ent.putData(parea[o : o+datalen])
enc.PutUint32(buf[8:12], uint32(pstart+o))
o += datalen
}
if _, err := w.Write(buf[:]); err != nil {
return err
}
}
// The IFD ends with the offset of the next IFD in the file,
// or zero if it is the last one (page 14).
if err := binary.Write(w, enc, uint32(0)); err != nil {
return err
}
_, err := w.Write(parea[:o])
return err
}
// Options are the encoding parameters.
type Options struct {
// Compression is the type of compression used.
Compression CompressionType
// Predictor determines whether a differencing predictor is used;
// if true, instead of each pixel's color, the color difference to the
// preceding one is saved. This improves the compression for certain
// types of images and compressors. For example, it works well for
// photos with Deflate compression.
Predictor bool
}
// Encode writes the image m to w. opt determines the options used for
// encoding, such as the compression type. If opt is nil, an uncompressed
// image is written.
func Encode(w io.Writer, m image.Image, opt *Options) error {
d := m.Bounds().Size()
compression := uint32(cNone)
predictor := false
if opt != nil {
compression = opt.Compression.specValue()
// The predictor field is only used with LZW. See page 64 of the spec.
predictor = opt.Predictor && compression == cLZW
}
_, err := io.WriteString(w, leHeader)
if err != nil {
return err
}
// Compressed data is written into a buffer first, so that we
// know the compressed size.
var buf bytes.Buffer
// dst holds the destination for the pixel data of the image --
// either w or a writer to buf.
var dst io.Writer
// imageLen is the length of the pixel data in bytes.
// The offset of the IFD is imageLen + 8 header bytes.
var imageLen int
switch compression {
case cNone:
dst = w
// Write IFD offset before outputting pixel data.
switch m.(type) {
case *image.Paletted:
imageLen = d.X * d.Y * 1
case *image.Gray:
imageLen = d.X * d.Y * 1
case *image.Gray16:
imageLen = d.X * d.Y * 2
case *image.RGBA64:
imageLen = d.X * d.Y * 8
case *image.NRGBA64:
imageLen = d.X * d.Y * 8
default:
imageLen = d.X * d.Y * 4
}
err = binary.Write(w, enc, uint32(imageLen+8))
if err != nil {
return err
}
case cDeflate:
dst = zlib.NewWriter(&buf)
}
pr := uint32(prNone)
photometricInterpretation := uint32(pRGB)
samplesPerPixel := uint32(4)
bitsPerSample := []uint32{8, 8, 8, 8}
extraSamples := uint32(0)
colorMap := []uint32{}
if predictor {
pr = prHorizontal
}
switch m := m.(type) {
case *image.Paletted:
photometricInterpretation = pPaletted
samplesPerPixel = 1
bitsPerSample = []uint32{8}
colorMap = make([]uint32, 256*3)
for i := 0; i < 256 && i < len(m.Palette); i++ {
r, g, b, _ := m.Palette[i].RGBA()
colorMap[i+0*256] = uint32(r)
colorMap[i+1*256] = uint32(g)
colorMap[i+2*256] = uint32(b)
}
err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.Gray:
photometricInterpretation = pBlackIsZero
samplesPerPixel = 1
bitsPerSample = []uint32{8}
err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.Gray16:
photometricInterpretation = pBlackIsZero
samplesPerPixel = 1
bitsPerSample = []uint32{16}
err = encodeGray16(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.NRGBA:
extraSamples = 2 // Unassociated alpha.
err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.NRGBA64:
extraSamples = 2 // Unassociated alpha.
bitsPerSample = []uint32{16, 16, 16, 16}
err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.RGBA:
extraSamples = 1 // Associated alpha.
err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.RGBA64:
extraSamples = 1 // Associated alpha.
bitsPerSample = []uint32{16, 16, 16, 16}
err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
default:
extraSamples = 1 // Associated alpha.
err = encode(dst, m, predictor)
}
if err != nil {
return err
}
if compression != cNone {
if err = dst.(io.Closer).Close(); err != nil {
return err
}
imageLen = buf.Len()
if err = binary.Write(w, enc, uint32(imageLen+8)); err != nil {
return err
}
if _, err = buf.WriteTo(w); err != nil {
return err
}
}
ifd := []ifdEntry{
{tImageWidth, dtShort, []uint32{uint32(d.X)}},
{tImageLength, dtShort, []uint32{uint32(d.Y)}},
{tBitsPerSample, dtShort, bitsPerSample},
{tCompression, dtShort, []uint32{compression}},
{tPhotometricInterpretation, dtShort, []uint32{photometricInterpretation}},
{tStripOffsets, dtLong, []uint32{8}},
{tSamplesPerPixel, dtShort, []uint32{samplesPerPixel}},
{tRowsPerStrip, dtShort, []uint32{uint32(d.Y)}},
{tStripByteCounts, dtLong, []uint32{uint32(imageLen)}},
// There is currently no support for storing the image
// resolution, so give a bogus value of 72x72 dpi.
{tXResolution, dtRational, []uint32{72, 1}},
{tYResolution, dtRational, []uint32{72, 1}},
{tResolutionUnit, dtShort, []uint32{resPerInch}},
}
if pr != prNone {
ifd = append(ifd, ifdEntry{tPredictor, dtShort, []uint32{pr}})
}
if len(colorMap) != 0 {
ifd = append(ifd, ifdEntry{tColorMap, dtShort, colorMap})
}
if extraSamples > 0 {
ifd = append(ifd, ifdEntry{tExtraSamples, dtShort, []uint32{extraSamples}})
}
return writeIFD(w, imageLen+8, ifd)
}

95
vendor/golang.org/x/image/tiff/writer_test.go generated vendored Normal file
View file

@ -0,0 +1,95 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import (
"bytes"
"image"
"io/ioutil"
"os"
"testing"
)
var roundtripTests = []struct {
filename string
opts *Options
}{
{"video-001.tiff", nil},
{"video-001-16bit.tiff", nil},
{"video-001-gray.tiff", nil},
{"video-001-gray-16bit.tiff", nil},
{"video-001-paletted.tiff", nil},
{"bw-packbits.tiff", nil},
{"video-001.tiff", &Options{Predictor: true}},
{"video-001.tiff", &Options{Compression: Deflate}},
{"video-001.tiff", &Options{Predictor: true, Compression: Deflate}},
}
func openImage(filename string) (image.Image, error) {
f, err := os.Open(testdataDir + filename)
if err != nil {
return nil, err
}
defer f.Close()
return Decode(f)
}
func TestRoundtrip(t *testing.T) {
for _, rt := range roundtripTests {
img, err := openImage(rt.filename)
if err != nil {
t.Fatal(err)
}
out := new(bytes.Buffer)
err = Encode(out, img, rt.opts)
if err != nil {
t.Fatal(err)
}
img2, err := Decode(&buffer{buf: out.Bytes()})
if err != nil {
t.Fatal(err)
}
compare(t, img, img2)
}
}
// TestRoundtrip2 tests that encoding and decoding an image whose
// origin is not (0, 0) gives the same thing.
func TestRoundtrip2(t *testing.T) {
m0 := image.NewRGBA(image.Rect(3, 4, 9, 8))
for i := range m0.Pix {
m0.Pix[i] = byte(i)
}
out := new(bytes.Buffer)
if err := Encode(out, m0, nil); err != nil {
t.Fatal(err)
}
m1, err := Decode(&buffer{buf: out.Bytes()})
if err != nil {
t.Fatal(err)
}
compare(t, m0, m1)
}
func benchmarkEncode(b *testing.B, name string, pixelSize int) {
img, err := openImage(name)
if err != nil {
b.Fatal(err)
}
s := img.Bounds().Size()
b.SetBytes(int64(s.X * s.Y * pixelSize))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Encode(ioutil.Discard, img, nil)
}
}
func BenchmarkEncode(b *testing.B) { benchmarkEncode(b, "video-001.tiff", 4) }
func BenchmarkEncodePaletted(b *testing.B) { benchmarkEncode(b, "video-001-paletted.tiff", 1) }
func BenchmarkEncodeGray(b *testing.B) { benchmarkEncode(b, "video-001-gray.tiff", 1) }
func BenchmarkEncodeGray16(b *testing.B) { benchmarkEncode(b, "video-001-gray-16bit.tiff", 2) }
func BenchmarkEncodeRGBA(b *testing.B) { benchmarkEncode(b, "video-001.tiff", 4) }
func BenchmarkEncodeRGBA64(b *testing.B) { benchmarkEncode(b, "video-001-16bit.tiff", 8) }