1
0
Fork 0
mirror of https://github.com/mealie-recipes/mealie.git synced 2025-07-30 10:39:43 +02:00
mealie/mealie/services/parser_services/crfpp/utils.py
Hayden 912cc6d956
feat(frontend): Add Meal Tags + UI Improvements (#807)
* feat: 

* fix colors

* add additional support for settings meal tag

* add defaults to recipe

* use group reciep settings

* fix login infinite loading

* disable owner on initial load

* add skeleton loader

* add v-model support

* formatting

* fix overwriting existing values

* feat(frontend):  add markdown preview for steps

* update black plus formatting

* update help text

* fix overwrite error

* remove print

Co-authored-by: hay-kot <hay-kot@pm.me>
2021-11-20 14:30:38 -09:00

310 lines
8.2 KiB
Python

import re
from statistics import mean
from . import tokenizer
def joinLine(columns):
return "\t".join(columns)
def cleanUnicodeFractions(s):
"""
Replace unicode fractions with ascii representation, preceded by a
space.
"1\x215e" => "1 7/8"
"""
fractions = {
"\x215b": "1/8",
"\x215c": "3/8",
"\x215d": "5/8",
"\x215e": "7/8",
"\x2159": "1/6",
"\x215a": "5/6",
"\x2155": "1/5",
"\x2156": "2/5",
"\x2157": "3/5",
"\x2158": "4/5",
"\xbc": " 1/4",
"\xbe": "3/4",
"\x2153": "1/3",
"\x2154": "2/3",
"\xbd": "1/2",
}
for f_unicode, f_ascii in fractions.items():
s = s.replace(f_unicode, " " + f_ascii)
return s
def unclump(s):
"""
Replacess $'s with spaces. The reverse of clumpFractions.
"""
return re.sub(r"\$", " ", s)
def normalizeToken(s):
"""
ToDo: FIX THIS. We used to use the pattern.en package to singularize words, but
in the name of simple deployments, we took it out. We should fix this at some
point.
"""
return singularize(s)
def getFeatures(token, index, tokens):
"""
Returns a list of features for a given token.
"""
length = len(tokens)
return [
("I%s" % index),
("L%s" % lengthGroup(length)),
("Yes" if isCapitalized(token) else "No") + "CAP",
("Yes" if insideParenthesis(token, tokens) else "No") + "PAREN",
]
def singularize(word):
"""
A poor replacement for the pattern.en singularize function, but ok for now.
"""
units = {
"cups": "cup",
"tablespoons": "tablespoon",
"teaspoons": "teaspoon",
"pounds": "pound",
"ounces": "ounce",
"cloves": "clove",
"sprigs": "sprig",
"pinches": "pinch",
"bunches": "bunch",
"slices": "slice",
"grams": "gram",
"heads": "head",
"quarts": "quart",
"stalks": "stalk",
"pints": "pint",
"pieces": "piece",
"sticks": "stick",
"dashes": "dash",
"fillets": "fillet",
"cans": "can",
"ears": "ear",
"packages": "package",
"strips": "strip",
"bulbs": "bulb",
"bottles": "bottle",
}
if word in units.keys():
return units[word]
else:
return word
def isCapitalized(token):
"""
Returns true if a given token starts with a capital letter.
"""
return re.match(r"^[A-Z]", token) is not None
def lengthGroup(actualLength):
"""
Buckets the length of the ingredient into 6 buckets.
"""
for n in [4, 8, 12, 16, 20]:
if actualLength < n:
return str(n)
return "X"
def insideParenthesis(token, tokens):
"""
Returns true if the word is inside parenthesis in the phrase.
"""
if token in ["(", ")"]:
return True
else:
line = " ".join(tokens)
return (
re.match(r".*\(.*" + re.escape(token) + ".*\).*", line) is not None # noqa: W605 - invalid dscape sequence
)
def displayIngredient(ingredient):
"""
Format a list of (tag, [tokens]) tuples as an HTML string for display.
displayIngredient([("qty", ["1"]), ("name", ["cat", "pie"])])
# => <span class='qty'>1</span> <span class='name'>cat pie</span>
"""
return "".join(["<span class='%s'>%s</span>" % (tag, " ".join(tokens)) for tag, tokens in ingredient])
# HACK: fix this
def smartJoin(words):
"""
Joins list of words with spaces, but is smart about not adding spaces
before commas.
"""
input = " ".join(words)
# replace " , " with ", "
input = input.replace(" , ", ", ")
# replace " ( " with " ("
input = input.replace("( ", "(")
# replace " ) " with ") "
input = input.replace(" )", ")")
return input
def import_data(lines):
"""
This thing takes the output of CRF++ and turns it into an actual
data structure.
"""
data = [{}]
display = [[]]
prevTag = None
confidence_all = [{}]
#
# iterate lines in the data file, which looks like:
#
# # 0.511035
# 1/2 I1 L12 NoCAP X B-QTY/0.982850
# teaspoon I2 L12 NoCAP X B-UNIT/0.982200
# fresh I3 L12 NoCAP X B-COMMENT/0.716364
# thyme I4 L12 NoCAP X B-NAME/0.816803
# leaves I5 L12 NoCAP X I-NAME/0.960524
# , I6 L12 NoCAP X B-COMMENT/0.772231
# finely I7 L12 NoCAP X I-COMMENT/0.825956
# chopped I8 L12 NoCAP X I-COMMENT/0.893379
#
# # 0.505999
# Black I1 L8 YesCAP X B-NAME/0.765461
# pepper I2 L8 NoCAP X I-NAME/0.756614
# , I3 L8 NoCAP X OTHER/0.798040
# to I4 L8 NoCAP X B-COMMENT/0.683089
# taste I5 L8 NoCAP X I-COMMENT/0.848617
#
# i.e. the output of crf_test -v 1
#
for line in lines:
# blank line starts a new ingredient
if line in ("", "\n"):
data.append({})
display.append([])
prevTag = None
confidence_all.append({})
# ignore comments
elif line[0] == "#":
pass
# otherwise it's a token
# e.g.: potato \t I2 \t L5 \t NoCAP \t B-NAME/0.978253
else:
columns = re.split("\t", line.strip())
token = columns[0].strip()
# unclump fractions
token = unclump(token)
# turn B-NAME/123 back into "name"
tag, confidence = re.split(r"/", columns[-1], 1)
tag = re.sub("^[BI]\-", "", tag).lower() # noqa: W605 - invalid dscape sequence
# ====================
# Confidence Getter
if prevTag != tag:
if confidence_all[-1].get(tag):
confidence_all[-1][tag].append(confidence)
else:
confidence_all[-1][tag] = [confidence]
else:
if confidence_all[-1].get(tag):
confidence_all[-1][tag].append(confidence)
else:
confidence_all[-1][tag] = [confidence]
# ---- DISPLAY ----
# build a structure which groups each token by its tag, so we can
# rebuild the original display name later.
if prevTag != tag:
display[-1].append((tag, [token]))
prevTag = tag
else:
display[-1][-1][1].append(token)
# ^- token
# ^---- tag
# ^-------- ingredient
# ---- DATA ----
# build a dict grouping tokens by their tag
# initialize this attribute if this is the first token of its kind
if tag not in data[-1]:
data[-1][tag] = []
# HACK: If this token is a unit, singularize it so Scoop accepts it.
if tag == "unit":
token = singularize(token)
data[-1][tag].append(token)
# reassemble the output into a list of dicts.
output = [
dict([(k, smartJoin(tokens)) for k, tokens in ingredient.items()]) for ingredient in data if len(ingredient)
]
# Preclean Confidence
for i, c in enumerate(confidence_all):
avg_of_all = []
for k, v in c.items():
v = [float(x) for x in v]
avg = round(mean(v), 2)
avg_of_all.append(avg)
confidence_all[i][k] = avg
if avg_of_all:
confidence_all[i]["average"] = round(mean(avg_of_all), 2)
# Add the raw ingredient phrase
for i, _ in enumerate(output):
output[i]["input"] = smartJoin([" ".join(tokens) for _, tokens in display[i]])
output[i]["confidence"] = confidence_all[i]
return output
def export_data(lines):
"""Parse "raw" ingredient lines into CRF-ready output"""
output = []
for line in lines:
line_clean = re.sub("<[^<]+?>", "", line)
tokens = tokenizer.tokenize(line_clean)
for i, token in enumerate(tokens):
features = getFeatures(token, i + 1, tokens)
output.append(joinLine([token] + features))
output.append("")
return "\n".join(output)